If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50z^2=36-5z
We move all terms to the left:
50z^2-(36-5z)=0
We add all the numbers together, and all the variables
50z^2-(-5z+36)=0
We get rid of parentheses
50z^2+5z-36=0
a = 50; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·50·(-36)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-85}{2*50}=\frac{-90}{100} =-9/10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+85}{2*50}=\frac{80}{100} =4/5 $
| 3x+4(x+5)=x-4 | | 7(17+5)=1x+-80 | | u/3+10=14 | | u/3+10=44 | | 3(11w-3)-12w=12(2w-8) | | -3x-5=9x+7 | | -9x-13=9x+7 | | 50/30=18/x | | X-6+9+2x-19=x | | 5(k-11)=12 | | 2+4n=-18 | | 4x+17=−2x+23 | | 3x+7-12x-6x-2-5=-15x-3+3 | | 4(7x)+4(-8)=-4 | | 9+a-5-1=3-3a+4a | | (3z-5)=(2z+2) | | 10x-5=15-2x-10+12x | | 6x+11+7x+143=0 | | 4=v-9 | | (5+2a)=(a-9) | | 3,7x-18+2,9x+7=11,5-7,2x | | (5m-8)=(2m+1) | | (5b-8)=(4-b) | | 20+10w=10(w+2) | | (5z+8)=(3z+16) | | (-3-4y)=(9-y) | | .5x-5=17 | | 1p+5=-2 | | 6−2z=6z−1 | | 2(x-40)=3x | | (3s+2)=(12-2s) | | 3x-17x+11=0 |